
J.  Fluid Mech. (1995), vol. 299, pp.  97-104 
Copyright 0 1995 Cambridge University Press 

97 

Generalization of the Forchheimer-extended 
Darcy flow model to the tensor permeability case 

via a variational principle 

By P. M. KNUPP’ A N D  J. L. LAGE’ 
Ecodynamics Research Associates, PO Box 9229, Albuquerque, NM 871 19, USA 

Mechanical Engineering Department, Southern Methodist University, Dallas, 
TX 75275-0337, USA 

(Received 1 September 1994 and in revised form 2 May 1995) 

A convex variational principle is used to obtain a generalization of the empirical 
nonlinear one-dimensional Forchheimer-extended Darcy flow equation to the 
multidimensional and anisotropic (tensor permeability) case. A modified permeability 
that is a function of flow velocity (or pressure gradient) is introduced in order to 
transform the nonlinear flow equation into a pseudo-linear form. Imposing an 
incompressibility condition on this pseudo-linear equation leads to a flow equation in 
Euler-Lagrange form which is used to build the corresponding variational principle. It 
is demonstrated that the variational principle is based on minimizing the power (time 
rate of doing work) required by the fluid to flow at a certain velocity under a prescribed 
pressure gradient. A consistent generalization of the Forchheimer equation to the 
tensor case then follows from the variational principle. The existence and uniqueness 
of solutions to the nonlinear flow equations might also be demonstrated using the 
variational principle on a case by case basis, once appropriate boundary conditions are 
chosen. 

1. Introduction 
Theoretical progress towards modelling flow in porous media has evolved in an 

interesting manner. It took around 100 years, after Darcy’s findings were published in 
1856, for the theory of flow through porous media to parallel and somewhat surpass 
the knowledge acquired through experimental evidence. For instance, the concept 
developed by Brinkman (1 947), the volume averaging technique introduced by 
Whitaker (1969) and explored by Bear & Bachmat (1990), the generalized equations 
proposed by Hsu & Cheng (1990), etc., are examples of fundamental theoretical 
advances leading to more complex flow models. It is noteworthy that only recently, 
with the use of the expensive NMR technique, has the ‘visualization’ of a flow field 
inside a porous solid matrix became a reality (see, for instance, Givler & Altobelli 
1994). Experimentation is catching up with theoretical development, and building 
fundamental ground for further theoretical advances. 

The simplest model for flow through a porous medium is the one-dimensional model 
derived by Darcy (1856). Obtained from empirical evidence, the Darcy law indicates 
that for an incompressible fluid flowing through a channel filled with a fixed, uniform, 
and isotropic porous matrix, the flow speed varies linearly with longitudinal pressure 
variation. Subsequently, Dupuit (1863) and Forchheimer (1901) presented further 
empirical evidence that the Darcy law, or the linearity between speed and pressure 
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variation, breaks down for large enough flow speed (a compilation of several 
experimental results is presented by MacDonald et al. 1979). 

A heuristic extension of the Forchheimer-extended Darcy model to multidimensional 
flow was presented by Stanek & Szekely (1974). It is interesting to note that in a recent 
monograph, Kaviany (1 99 1) pointed out the lack of multidimensional experimental 
results to support the extension by Stanek & Szekely (1974). He went on to propose a 
scalar form for the Forchheimer term, similar to the one proposed by Ward (1964), 
known to be valid for unidirectional flow. That the cubic drag term proposed by 
Forchheimer (1901) should in fact be quadratic was indicated in the work of 
MacDonald et al. (1979). This was emphasized later by Joseph Nield & Papanicolaou 
(1982) who stressed also that the (form) drag force modelled by the Forchheimer term 
acts in a direction opposite to the velocity vector. It follows that in multidimensional 
flow, the momentum equations for each velocity component derived using the 
Forchheimer-extended Darcy model are coupled to each other. 

Another important topic related to multidimensional flow in porous media is that of 
isotropy. Invoking isotropy of the medium, in which permeability is invariant with 
location, is a norm among published work in the area. Any attempt to analyse flow 
through an anisotropic porous medium using the original Forchheimer-extended 
Darcy equation is at least speculative. 

This note considers the theoretical generalization to the tensor permeability case 
(anisotropic medium) of the empirically obtained Forchheimer-extended Darcy 
unidirectional flow model. Initially, a convex variational principle that minimizes the 
power (time rate of doing work) of the flow is built from the isotropic multidimensional 
model. This principle is then extended to the tensor permeability case and the result 
transformed back into a flow equation format. 

2. Forchheimer-extended Darcy equation : pseudo-linear form 
The empirically obtained unidirectional momentum equation for flow of in- 

compressible fluid through a fully saturated homogeneous and isotropic porous 
medium (Ward 1964) is 

where dp/dx is the pressure variation along the flow direction, u is the seepage flow 
speed, ,u is the dynamic viscosity of the fluid, p is the density of the fluid, Kis the porous 
matrix permeability, and c p  is the Forchheimer or inertia coefficient. 

Equation (2.1) can be extended to vectorial form (see Hsu & Cheng 1990 for a formal 
derivation of a general equation obtained by volumetric averaging with closure based 
on drag force due to solid particles), assuming an isotropic and still homogeneous 
porous medium, as 

1 ‘F --vp = - v + - ~ I v ~ v .  
K Klt2 P 

Notice that a basic physical assumption behind (2.2) is the colinearity of form and 
viscous drag forces. The nonlinear nature of (2.2) can be relegated to the permeability 
term by introducing a velocity-dependent permeability parameter, or modified 
permeability k: 

1 K 
K =  

1 +(Kli2cF/v) IvI ’ 
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where v is the kinematic viscosity of the fluid. So (2.2) is now written in a pseudo-linear 
form 

1 V 
--vp = ,v. 

P K 

Equation (2.4) is similar to the Darcy equation for multidimensional flow, except that 
the permeability is now velocity dependent. The modified permeability dependence on 
velocity can be substituted with a pressure gradient dependence by eliminating the 
velocity from (2.3) and (2.4). Keeping the positive root, 

with y = cF/(v2p) .  Equation (2.5) indicates that the modified permeability kvaries with 
IVpl-l18 for large pressure gradients, as expected. Also, it is easy to verify that the 
nonlinear velocity effect is negligible when 

1 
lVPl Q yK"'" 

It is worth emphasizing that pressure and velocity are fundamental quantities that 
can both be measured in the field, with permeability being the derived quantity. 
Therefore (2.4) and (2.5) are also of practical importance because they provide a 
simpler model to compute the modified permeability that incorporates the nonlinear 
character of the flow. 

3. Flow equation 

written as in (2.4), with the continuity equation for incompressible fluid 
By combining the vectorial form of the Forchheimer-extended Darcy equation 

v-u=o, 
the flow equation reduces to 

Substituting the kexpression given by (2.3) into (3.2) leads to a flow equation in terms 
of pressure gradient and magnitude of velocity vector : 

V .  K l v  vp = 0. 
1 + (K'/"cF/V) (u(  

(3.3) 

To solve (3.3), the magnitude of the velocity vector has to be obtained from the 
Forchheimer-extended Darcy model. Taking the magnitude of both sides of (2.2): 

and solving for ) u ) ,  keeping in mind that only the positive root is of interest, results in 

(3.5) 
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With ( 3 . 5 )  inserted into (3 .3) ,  a nonlinear flow equation in the pressure gradient is 
obtained : 

v p  = 0. 2K/v  
1 + ( 1  +4yK3" lVpl)1'2 

V .  

In the following section it is demonstrated that (3.6) is convenient for building a 
variational principle of the nonlinear Forchheimer-extended Darcy model. 

4. A variational principle 
A variational principle is now devised as a tool to extend the nonlinear flow equation 

(3.6), valid for an isotropic and homogeneous porous matrix, to the tensor permeability 
case. Suppose GI R + R is a continuous function, f2 c R", n = 2 or 3 ,  is smooth and 
bounded, and p I $2 + R is continuous. Extrema of the functional 

are to be computed. Letting s = IVpl, it is straightforward to show that the 
Euler-Lagrange equation for the principle is 

(4.2) 
G' 

v.-vp = 0, 
S 

where G' = dG/ds. The nonlinear flow equation (3.6) has a similar form if 

2Ks/v  
1 + (1 + 47x3'2 s)1/2 * 

G(s) = 

Integration of (4.3) in s leads to 

[( 1 + 4yK3l2 s)3/2 - 6yK3/'s - 1 1 ,  
1 

1 2vy2K2 
G(s) = 

(4.3) 

(4.4) 

with the arbitrary constant being determined by matching the result with limiting cases. 
The variational principle for the Forchheimer-extended Darcy flow equation is thus to 
minimize 

If the pressure gradient is small, i.e. 4yK3l2 lVpl 4 1 ,  then the integrand approaches 
( K / v )  IVP~~,  and the variational principle for the linear Darcy flow model is recovered. 

In remains to establish the convexity of I[p]. Since the second derivative of G(s), 

is always positive, I is convex over W$"O(SL, R) (see Dacorogna 1989). As suggested by 
one of the reviewers, the existence and uniqueness of solutions to the nonlinear flow 
equation could be verified once boundary conditions are precisely set. Such effort is not 
within the scope of the present study because it is particular to each specific boundary 
value problem. 

It remains to be determined what physical quantity is represented by the functional 
I[p]. Notice that (2.4), the pseudo-linear Darcy equation with modified permeability, 
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implies that the vector velocity and pressure gradient are colinear. Equations (3.1) and 
(4.2) indicate that 

Defining the unit vector aligned with Vp as 
G’(lVPI) VPllVPl = (4.7) 

f i  = VP/JVPl, (4.8) 

(4.9) 

and combining it with (4.7), leads to a function G as follows: 

G’(lVp1) = dG/d)Vpl = 1 ~ 1 .  
Therefore, function G((Vp() represents, in two dimensions, the power (time rate of 
doing work) per unit of area (or per unit of volume if in three dimensions) necessary 
for the fluid to flow at speed IuI under the pressure gradient IVp(. The physical 
interpretation of functional Z[p], equation ( 4 . 9 ,  is that of the power (quantity to be 
minimized) associated with IuI and IVpl. 

5. Extension to tensor permeability 
Suppose, as in an anisotropic medium, the permeability be expressed by a symmetric, 

positive definite 2 x 2 or 3 x 3 tensor, K, for flow in a set D c R”, with n = 2 or 3, 
respectively. What is the appropriate generalization of the Forchheimer-extended 
Darcy model, equation (2.2)? Direct generalization is not fruitful since there are several 
possible generalizations (see Bachmat 1965 for such a generalization). 

In what follows, it is proposed that the variational principle derived in the previous 
section for the isotropic case be used as the basis for generalizing the flow equation. 
Start by rewriting the isotropic scalar variational principle, equation (4.4), as 

{[ 1 + 4yK(Vp - K V P ) ~ ’ ~ ] ~ ’ ~  - 67K(Vp * K V P ) ” ~  - 11. 
1 

12vy2K2 
G =  

Equation (5.1) suggests the following generalization for the tensor-permeability case : 

with 
functional, let s = (VP-KV~)’’~,  so that the variational principle is of the form 

= det K for a 2 x 2 tensor, or = (det /02/3 for a 3 x 3 tensor. To analyse this 

where 

The Euler-Lagrange equation is then 

G’ v-Kvp = 0. 
S 

(5-4) 

(5 - 5) 

Computing G’ from (5.4), and defining a modified permeability tensor, K, equation 
(5.5) can be written in the same form as the flow equation for an isotropic medium, 
equation (3.2), as 

(5.6) v-vp = 0, 
K 
V 
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where 

Since 

then 

and finally, 

.. 2K 
1 + [ 1 + 4’7K(Vp * KVp)1i2]1i2 ’ 

K =  

a K 
K =  

1 + ( c , / v ) K ( v * K - ~ v ) ~ / ~ ’  

(5.7) 

(5.9) 

(5.10) 

Equation (5.10) is the generalization of the Forchheimer-extended Darcy equation to 
tensor permeability. Note the analogy between (5.10) and the isotropic equation (2.2). 

To show convexity of the tensor-permeability functional, it is sufficient to observe 
that 

(5.1 1) 

is positive. 
A special case where (5.10) could be tested against experimental evidence is now 

proposed. Consider an array of spherical particles whose centres are on a rectangular 
lattice, but with different interparticle spacings in each direction. With the principal 
axes of the permeability tensor aligned with a Cartesian system of coordinates, the 
inverse of the permeability tensor is diagonal with elements: I /Kz ,  l / K y ,  I/&. 
Equation (5.10) prescribes the following function : 

( 5 ) V p  = v ( ~ , ~ , ~ ) + c , ( K , K , K , ) ” ”  . (5.12) 

Consider further a simplified flow configuration unidirectional in x, with speed vz. 
From (5.12) the pressure drop is related to flow speed by 

(5.13) 

An interesting limiting case would be that of flow through parallel tubes when Ky/K,  
and KJK, are zero. In this case, the nonlinear (form) drag goes to zero, as expected 
since momentum in this case is diffused by viscous drag only. 

6. Extension to a tensor inertia coefficient 
We finally point out that the inertia coefficient cF is representative of the microscopic 

form drag imposed by the solid porous matrix, that is, it depends on the geometry 
(shape) of the solid within each representative elementary volume of the porous 
medium. It is worth noting that cF and K are independent parameters. It is possible to 
think of cases in which a porous medium presents different amounts of anisotropy for 
permeability and inertia (Forchheimer) coefficients. One can consider, for instance, 
spheres with a small patch of sand roughness attached to their surfaces. If the spheres 
are uniformly distributed in a rectangular lattice, and as they have essentially the same 
geometry and diameter, the medium can provide an essentially isotropic viscous drag 



Generalization of Forchheimer-extended Darcy pow model 103 

(permeability) measured at low flow speed (Darcy regime). However, the form drag 
(inertia coefficient), measured at high flow speed, is expected to be anisotropic as the 
patch will induce flow separation at different surface locations for different flow 
directions . 

In cases when the inertia coefficient is anisotropic, the y coefficient in (5.1) must be 
translated into a tensor, leading to an equation similar to (5.2) written as 

1 
G = ‘{[l +4r~(Vp.KVp)~”]~”-6r~(Vp.KVp)”~- l}, 

12vr  K 

with r2 = det y for a 2 x 2 tensor, or r2 = (det y)’l3 for a 3 x 3 tensor. Notice that y is 
the modified inertia coefficient tensor, that is, y = [l/(v2p)] c,, where c, is the inertia 
coefficient tensor. The analysis following (5.2) still holds for the tensor inertia 
coefficient case by simply substituting y by r in (5.4), (5.7) and (5.1 1). Equations (5.9) 
and (5.10) are rewritten, respectively, as 

and (=p’)Vp = v[l + v p r ~ ( u . K - ~ v ) ~ ” ]  K-lv. (6.3) 

Equation (6.3) is the generalization of the Forchheimer-extended Darcy equation to 
the tensor permeability and tensor inertia coefficient. 

7. Conclusion 
A variational formulation is developed and applied to a flow model based upon the 

Forchheimer-extended Darcy equation and incompressible fluid constraint. The 
functional of the variational principle is shown to represent the power (time rate of 
doing work) necessary for the fluid to flow at a certain speed under a particular 
pressure gradient. The variational form is then utilized to extend the flow model to an 
anisotropic case, where the permeability and inertia coefficient parameters have to be 
substituted by a 2 x 2 or by a 3 x 3 tensors. The result is traced back to a consistent 
Forchheimer-extended Darcy equation for modelling fluid flow of incompressible fluid 
through anisotropic media. The variational principle can also be used for dem- 
onstrating the existence and uniqueness of solutions to the nonlinear flow equations, 
once boundary conditions appropriate to an specific problem are specified. 
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